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15.1 INTRODUCTION

Heavy fermions, which are also sometimes referred to as heavy
of intermetallic compounds containing lanthanide (mostly Ce, Yb) or actinide (mostly U,
ther compounds such as quasi two-dimensional CeColns and

The common feature of the heavy fermions is that they have
1000 times greater than the mass of a free electron) below a coherence

collection
Np) elements. They also include o
“Qkutterdites” such as PrOs;Sb,.
large effective mass m" (50—

electrons, are a loosely defined

temperature 7. The effective mass is estimated through the electronic specific heat. In general, for
very low temperatures, the specific heat C of a metal can be expressed as

CIT =y +pT?, (15.1)

where

v = Vkpkim® 138, (15.2)

Here, V,, is the molar volume, ky is the Fermi vector, m” is
absolute temper‘ature, y is the electronic contribution, and
specific heat. There is an additional spin-fluctuation t

For normal metals such as copper or aluminum,

A generally accepted definition of heavy
K2 below the coherence temperature T".

can be a comparison between systems with different structure. Some of the other prope

the effective mass of the electron, T is the
f is the contribution of the phonons to the

erm 87° In T in the specific heat of UPt; and UAL,.
y is of the order 1 mJ/mol K? at low temperatures.
fermions is those systems that have y > 400 ml/f atom mol
y is generally normalized to a mole of f atoms so that there

rties of

heavy fermions include (a) an enhanced Pauli spin susceptibility indicating a large effective mass; (b) 2

Wilson ratio of approximately one; (c) a huge
term in the electrical resistivity; and (d) highly
temperature-dependent de Haas—van Alphen oscil-
lation amplitudes at very low temperatures. The
Wilson ratio (Ref. 35) R is defined as

B ﬂ'zkz x(0)
g3 (J+1)y(0)

Here, y(0) and y(0) are the magnetic susceptibil-
ity and specific heat at zero temperature, J is the
total angular momentum, g; is the Landé g factor,
and the other symbols have their usual meanings.
CeAls, which earlier had been considered
a mixed-valence compound, was the first
heavy-fermion system discovered by Andres
et al. in 1975. They found that below 0.2°K,
y=1620 ml] mole/K? and the. coefficient of the
72 term in p =AT?, A=35 pQ cm/K>. The
intense interest in heavy-fermion systems started
with the discovery of superconductivity in
CeCu,Si, by Steglich et al.”® in 1979. Their
results are shown in Figures 15.1 and 15.2.

(15.3)
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FIGURE 15.1
Resistivity (main part) and low-field ac
susceptibility (inset) of CeCu,Siz as a function of
temperature. Arrows give transition temperatures
79 = 0.60+0.03°K and T = 0.54 = 0.03" e
Reproduced from F. Steglich et al.?° with permission of the
American Physical Society
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Molar specific heat of CeCu,Si, as a function of
temperature on a logarithmic scale. Inset shows the
specific heat jumps of two other samples. FIGURE 15.3
Reproduced from F. Steglich et al.?® with the permission of
the American Physical Society.

TK2)

Specific heat of nonsuperconducting single crystals

() and a piece of superconducting crystal (m) of

UBEl3.

Reproduced from Stewart>® with the permission of the American
Physical Society.

The main part of Figure 15.2 shows, in a logarithmic scale, the molar specific heat of CeCu,Si,
at B=0 as a function of temperature. The inset in Figure 15.2 shows in a C/T plot the specific
heat-jumps of two other CeCu,Si, samples that do not look very profound.

The specific heat-jumps below the coherence temperature 7%, which is characteristic of heavy-
fermion systems, are elegantly displayed when one plots C/T versus T2. Stewart™® plotted C/T ver-
sus 7% of nonsuperconducting single crystals of CeCu,Si, and a piece of a superconducting single
crystal of UBe,3. These results are reproduced in Figure 15.3, in which the line through UBe;3
serves as a guide to the eye.

Since 1974, approximately 50 heavy-fermion compounds have been discovered, but there is no
uniformity in their properties. For example, UBe,3 is a superconductor in the ground state with
non-Fermi-liquid properties in the normal state, whereas UPt; orders antiferromagnetically below
the Née! temperature (Ty), exhibits a heavy Fermi-liquid state well below Ty, and has unconven-
tional superconductivity with a multicomponent superconducting parameter. CeAl, and UsZn,; are
antiferromagnets with weak moments at very low temperatures, and CeNiSn and Ce;BisPt; are

[
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narrow-gap semiconductors with quasiparticles having large effective masses. Some heavy-fermion
superconductors such as CeColns are quasi two-dimensional. The only common feature is the large
effective mass below the coherence temperature and the fact that all these are highly correlated elec-
tron systems. In addition, some heavy fermions such as CeRu,Si, exhibit metamagnetism, which
has a wide variety of technological applications.

There are many factors that lead to the conclusion that the large effective mass of heavy
fermions below the coherence temperature is not due to band-structure renormalization. For exam-
ple, the magnitude of the nuclear relaxation rate of UBe;3 and the ultrasonic attenuation in UPt5 in
the normal state are the same as ordinary metals. The thermal conductivity measurements in
CeCu,Si,, UBe 3, and UPt; yield results similar to ordinary metals.

There have been several powerful techniques applied to discuss the theory of these strongly
correlated systems. However, the theory of these systems lags behind the experiment. In this chapter,
we will discuss the properties of the wide variety of these correlated systems without going into the
details of the complex theories.

5.2 KONDO-LATTICE, MIXED-VALENCE, AND HEAVY FERMIONS

15.7.1 Periodic Anderson and Kondo-Lattice Models

It has been noted that the majority of the rare-earth and actinide compounds have local moments
and can be classified as systems in the magnetic regime. The f orbitals have no charge fluctuation
in this region and have integral valence. Therefore, they can be considered to be in a Mott
insulating stage. Weak residual spin polarization of the conduction electrons, Rudderman-Kittel-
Kasuya—Yosida (RKKY) interactions between the local moments (Refs. 12, 21, 36), magnetic tran-
sition at low temperatures, and spin-wave excitations occur. The spin waves scatter the conduction
electrons at low temperatures.

To correlate and to study their dependence on the various relevant parameters, the simplest Hamil-
tonian is the orbitally nondegenerate periodic Anderson model (Ref. 1). The periodic Anderson model
for a system consisting of a set of N sites is denoted by sites i, j. On each site, there are two orthogo-
nal nondegenerate orbitals that will be referred to as C and f. The Hamiltonian is assumed to have the
form

PRI RN of A At s aton ot
H=13 C,Cio+V Y (Cio'fjﬂ + fjg'CiO') + efzf[,o'fio' + UZfinin;qu. (15.4)

i#o i#,o

Here, ¢ (which can be positive or negative) is the transfer (hopping) integral of the qutendedhoﬂhO—
gonal orbitals between sites i and j (restricted to nearest neighbors in our model). C; and Cj, are
the creation and annihilation operators for these extended orbitals at sites i and j with spin o. There
is one extended orbital per site per spin with a mean energy that is the origin of the energy scale.
f; and f ., are the creation and annihilation operators for the localized f orbitals (i denotes the site)
with energy ¢ V is a positive hybridization parameter between the localized and the band orbitals
in neighboring sites. The third term represents the single-particle energy of the isolated f orbitals.
The fourth term is an interaction of the Hubbard type between electrons of the f orbitals on the
same site. U is the Coulomb repulsion between two electrons of opposite spin in the f orbital and
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describes a short-range interaction between them. U is positive, whereas ¢ and & can have either
sign. When we consider the f orbital only on a single site, the model (Eq. 15.4) is reduced to
a single-impurity Anderson model (Ref. 1), as discussed in Section 13.9, except that the localized
magnetic moment for rare-earth metals is due to s — f mixing instead of s —d mixing as originally
visualized in the single-impurity Anderson model.

The Hamiltonian (Eq. 15.4) can be angmented by additional terms such as second-neighbor hop-
ping or Coulomb repulsion between extended orbitals and f electrons, or between electrons on dif-
ferent sites. Because the orbital degeneracy is neglected, there is no Hund’s rule coupling between
the f orbitals in this model. However important such terms are in applications to real systems, they
are ignored here in the belief that they would contribute nothing really essential to the qualitative
physics.

When each f orbital is occupied by a single electron (either up-spin or down-spin), the system is
described as the Kondo regime. The empty sites and doubly occupied sites become virtual states.
The low-energy physics of the periodic Anderson model (Eq. 15.4) can be described by an effective
model where the f-electron degrees of freedom are represented by localized spins. Schrieffer and
Wolff (Ref. 24) (Problem 15.1) used a second-order perturbation with respect to V to obtain an
effective Hamiltonian

H=tY (ClCf+H.C.)+JY S;- S, (15.5)
J#ie i
where
Si =1 X tofi firs (15.6)
8¢ =13 700 ClhCirn (15.7)

and t are the Pauli spin matrices. Thus, §; are the spin-density operators of the conduction elec-
trons, and S; are the localized spins. J is the exchange interaction, which is antiferromagnetic
(/>0) and inversely proportional to U/. Under symmetric conditions, J = 8V?/U.

Thus, the rare-carth compounds that have either localized four f-electrons (Ce, Yb) or five
f electrons (U, Np) can be considered as a Kondo-lattice (Ref. 9), where at each lattice site a local
moment interacts via an exchange coupling J with the spin of any conduction electron sitting at the
site. The Hamiltonian in Eq. (15.5) is also known as the Kondo-lattice model (Ref. 9). The
exchange coupling is the source of interesting many-body effects in the Kondo-lattice model. The
complexity of solving the Kondo-lattice model arises due to the complex correlation effect invol-
ving both the localized spin and the itinerant electron degrees of freedom. In fact, a conduction
electron undergoes a spin-flip process with a localized spin if the spin is antiparallel. The conduc-
tion electron leaves a trace of its spin exchange processes with the localized spins while moving
around the lattice. The direction of the localized spins is determined by the history of the electrons
that passed through this site. Thus, the conduction electrons are no longer independent. There are
similar correlation effects in the periodic Anderson model due to the dynamic aspects of the loca-
lized electrons. Because these systems are highly correlated, most of the theoretical models devel-
oped during the past 30 years are approximate treatments of the complex problem.

W
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i Mixed-Valence Compounds

The properties of rare-earth metals and their compounds as well as the actinide compounds have
been the subject of a great deal of interest for the past 40 years. A subclass of these rare-earth and
the actinide compounds is known as mixed-valence compounds, which are poor metals but have a
fluctuating valence. Clear indication that two ionic valence states are present in these compounds is
provided by X-ray photoelectron spectra in which the two valence states are seen side by side.
They are also evident by both photoemission measurements as well as by isomer-shift measure-
ments. In these compounds, near the Fermi energy, the s and d electrons as well as the much
heavier f electrons are present. A simple explanation is that because in the ground state, both f*
and ( " + conduction electron) configurations are present, their energies must be very close. The
difference of energy is on the order of the hopping line width. The extra electron is assumed to g0
into an extended state, so its energy is equal to the Fermi energy. The extra available f orbital can
be described as a localized state, with energy & nearly equal to the Fermi energy Ey, and that can
accept one electron but not two.

The mixed-valence compounds generally form with rare-earth elements only at the beginning,
the middle, and the end of the rare-earth series. The reason that the beginning and the end of the
rare-earth series are favored is that a closed shell screens the nuclear charge very effectively.
Hence, the 4f electron in Ce and the 4f hole in Yb are loosely bound and not far off from the 54
configuration. The middle of the rare-earth series is favored because of the importance of Hund’s
rule coupling. The final occupied flevel, even for Sm, is not far below the d-level.

A typical example of a mixed-valence compound is SmS, which is a semiconductor at normal
pressure. Sm has the electronic structure [Xe] 47°5d°6s%, and S has the electronic structure
[Ne] 3s%3p*. In compounds, the dlevel broadens into a band and hybridizes with the 6s band, but
the flevels are essentially unaffected. In a schematic electronic structure, one can visualize a
localized f®level in the gap between the 54 —6s band and the s — p bands.

Under pressure, the lower of the crystal field split d-bands broadens and moves down in energy
relative to the flevel and ultimately crosses it. When the f—d gap goes to zero, a metal insulator
transition occurs. The electronic structure and the density of states for the metallic state are shown
schematically in Figure 15.5.

The f-levels hybridize with the d level on a neighboring atom because they cannot hybridize with the
dlevel of the same atom (the f° configuration has a total /= 0). The “bandwidth” of the hybridized
Jf-band is very narrow so that in the density of states, over the smooth 5 —d background, thete is a sharp-

peak attributable to the f-like atomic character in 2

/ / / / / /gd_ss bancy / / / / tight-binding representation. The wave functions
near this peak are linear combinations of f-like
and d-like wave functions and can be written as

e Wi(r) = @y (v) + b (1), (15.8)

S S S s-poands /S S/ where the proportion ay to by varies rapidly near

the peak. The f%level, which is nondegenerate
FIGURE 15.4 due io correiation energy, accommodates only
Schematic structure of SmS in the semiconducting one electron per atom. Because this peak is
phase. derived from the f®level, the integrated density
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2 ot oot of states of f-like character in it is also
T ! T one-electron per atom. Hence, at 7= 0, the Fermi
\ . il level is pinned to lie in the f peak. This character-

/ istic is in a sense the definition of mixed-valence

/ compounds. The wave function in Eq. (15.8)
/ represents the linear combination of the atomic
\ Y/ A orbital states, which is partly f°d and partly f°.
\ b/ F The d electron is not affected by the local atomic

\ ) a’/ exchange and correlations because it is relatively
A / free. Thus, v, (r) represents a linear combination
R of 3+ and 2+ valence states on the rare-earth ion,

and the compound is known as a mixed-valence
system. The average valence can be defined as

FIGURE 15.5 Voo = X la/IT 0] (15.9)
Electronic energy levels for mixed-valence materials. k k
A wide sd band overlaps one of the configurations of
the multiplet splitting of felectrons.

Reproduced from Varma® with the permission of the American

where the sum is over the occupied part of the
occupied band. However, the instantaneous
valence V,,,, will be different from V,, because the

Physical Society. .
J electrons have a nonzero bandwidth.

Slave Boson Method

The slave boson method was developed for the U=o0 periodic Anderson model that had the
constraint n; <1 at each site. The essential feature of this method is that the localized electron
operators are written as a composition of a fermion f and a boson b, where we may consider the
boson as an f vacancy. Every site is occupied either by an f fermion or a b boson. The localized
electron operators are written as a composition of a boson » and a fermion #. One defines’

T=7h and f, = bif,. (15.10)
The operator equality,
Sofutbibi=1, (15.11)

satisfies the preceding condition. The Anderson lattice Hamiltonian can be written as

H =Y ec],cn0 + szj;zﬁa + VZ(C.TaBl-Tﬁn +JA”,<T,1A7,-CI'5) +2 A (Zfi:-ﬁu + Z’j bi— 1) - (15.12)
k.o io io i 4

Here, 1; is a Lagrangian multiplier for the site i and is needed to impose the local constraints. The
properties of the Hamiltonian (Eq. 15.12) are usually discussed in a mean-field approximation. It is
assumed that the bosons have Bose condensations, <l§,~> = by, and the Lagrange multiplier 4; =4,
for all sites. Thus, the constraint is obeyed only on the average over the whole system.

|
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Cluster Calculations

To correlate the mixed-valence, Kondo, and heavy-fermion behavior and to study how they corre-
spond to different regimes of one fundamental phenomenon (at least in Ce systems), Misra et al.!”
considered the application of the periodic Anderson model to finite clusters with periodic boundary
conditions. Although the phrase “periodic Anderson model” is somewhat inappropriate when
applied to a small system, they used it in reference to a four-atom cluster in which each site has a
localized orbital and an extended orbital with appropriate Coulomb repulsion, hybridization, and
transfer matrix elements. In a later paper, they extended the number of electrons to eight particles,
but the results were similar. The value of small cluster calculations is that exact solutions of the
Hamiltonian are obtained. However, it has to be recognized that in some respects, small clusters are
not representative of bulk materials. For example, at sufficiently low temperatures the specific heat
of a cluster model will vanish exponentially, and the magnetic susceptibility will either be infinity
or zero. The large number of states obtained even for a small cluster suggests that statistical
mechanics may give results that fairly represent a large system over a reasonable range of
temperatures. )

Misra et al. (Ref. 17) applied the periodic Anderson model (Eq. 15.4) to four-site tetrahedral clus-
ters of equal length with periodic boundary conditions, thereby including the band structure effects.
For example, their model Hamiltonian for a tetrahedron is identical to that of an fcc lattice if the Bril-
louin zone sampling is restricted to four reciprocal-lattice points, the zone center I, and the three
square-face-center points X. They studied the region of crossover between the magnetic, Kondo, and
mixed-valence regimes by varying the different parameters U/Iz1, V/I4l, and E¢/I7l, and their results for
the tetrahedron, which reflect the properties of cerium alloys, are presented in Figure 15.6.

One can distinguish the three regimes by considering n electrons per site. Consider the non-f
electrons to constitute an electron reservoir. In Figure 15.6, E, is the Fermi level when there are n
non-f electrons per site, and E,, is the Fermi level when there are n — 1 electrons per site (if there
is no interaction with the f electrons). Er is the chemical potential when the f electrons are in con-
tact with the electron reservoir. Let E; be the energy boundary such that at 7= 0, the ion will be in
the f° state if Ep <Ey and in the f U state if Ep > E¢. Er+ U is another ionization boundary separat-
ing the f! state from the f? state. The crossover from one regime to another depends sensitively on

the various parameters U,V, and Ef as well as

on the geometry (band structure),
Ea 2 The Hamiltonian (Eq. 15.4) is conveniently
ErU considered on a basis of states diagonal in occupa-
tion numbers; Misra et al. (Ref. 17) calculated the
many-body eigenstates and eigenvalues. Because
spin is a good quantum number, the states can be
classified as spin singlets, triplets, and quintets.
For n = 4, there are 784 singlet, 896 triplet, and
140 quintet states. For n = 8 (Ref. 3), there are
12,870 states available for eight particles. These
FIGURE 15.6 rather large numbers of states should tend to make
A schematic diagram illustrating the dependence of the results somewhat representative of large sys-
the three different regimes on the position of the Flevel.  tems except at extremely low temperatures (lower
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than the separation between the ground state and the first excited state). The significant results are pro-
Jected through the diagram in Figure 15.7.

Misra et al. (Ref. 17) constructed a computer program to diagonalize the Hamiltonian within
subspaces of fixed values of S,. They calculated the J-state occupation (r;), temperature dependence
of specific heat (C,), and the magnetic susceptibility ( Xy) of the f electrons (by using a canonical
ensemble) for a large number of parameters. In Figure 15.8, a typical example is presented by plot-
ting C,/T against T for E; ranging from —5.0 to —4.0 (ny varies from 0.9943 o 0.9788).

We notice that for E; = —5.0, C,/T increases very rapidly at very low temperatures (which
mimics the onset of heavy-fermion behavior) but gradually decreases as E; is increased until the

1.0 T T T T T T T T T T T T T

0.7} i

06 i

0.4 4

03} N

2.0
1.5

0.1} 0.5

Egyt

FIGURE 15.7

The foccupation number per site, ny in the four-electron ground state in terms of £;and various
hybridization energies V for t = -1, U=50 for a tetrahedron.
Reproduced from Misra et al.'” with the permission of the American Physical Society.
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FIGURE 15.8

Cv/Thti versus TN for various £ for £ negative, /=50, and V=0.1 for a tetrahedron. Curve (@), Ef= -5.0;
curve (b), £, = -4.8; curve (¢), £r= -4.6; curve (d), £, = —4.4; curve (e), Er=-4.2; curve (f), E;= -4.0.
(All parameters in units of I#].)

Reproduced from Misra et al."” with the permission of the American Physical Society.

heavy-fermion feature has practically disappeared when Ef = —4.2. To explain the unusual increase
in CJ/T, Misra et al. (Ref. 17) plotted the energy-level diagram (Figure 15.9) of the first few many-
body states for each of these £ as well as for E; = —3.0.

In Figure 15.9, for E; = —5.0, the ground state is a singlet, but the next two higher-energy states
are a triplet and a quintet, which are nearly degenerate with the ground state. The low-temperature
rise in C, is determined by these three levels. As Ef increases, the separation between the lowest
three levels increases, and the rise in C,/T correspondingly decreases. Thus, the heavy-fermion
behavior is obtained when the many-body ground state is a singlet but nearly degenerate to two
other magnetically ordered states. The same pattern is repeated for a tetrahedron for t=1, except
that in some cases the ground state is a magnetically ordered triplet state. In such cases, the ground
state of the heavy-fermion system would be magnetically ordered.

In Figure 15.10, Misra et al. plotted kpy;T/ (gu2)(= xT) versus T/l to compare their results with
the benchmark results for the single-impurity Anderson model. They defined a “frozen-impurity”
regime (T = 0), a free orbital regime (x;7~0.125), a valence-fluctuation regime (1T =0.167),
and a local moment regime (;(szO.ZS). In addition, they defined an “intermediate regime” for
which 0 <y, 7 <0.125, but X1 essentially remains a constant in this regime.

We note from Figure 15.10 that when Ey = —5.0 (ny = 0.994), there is a transition from the
frozen-impurity to the local-moment regime. For E; = =3.0 (np = 0.725), there is a transition from
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ncrease
/ many-
the frozen-impurity to the valence-fluctuation regime. When E; is further increased, the transition is
y states from the frozen-impurity to the free orbital regime. The high-temperature results are in excellent 3
serature agreement with the single-impurity “benchmark” results. 11‘;}
: lowest : When we compare the specific heat curves with the ¥7 curves for the same parameters, the spe- I
fermion cific heat maxima generally occur below the temperature at which y7T reaches its high-temperature
to two ; value (i.e., the crossover temperature from enhanced Pauli- to Curie-like susceptibility). The main
, except reason is that at low temperatures where C, is a maximum, the many-body states with magnetic
ground moments are still just becoming thermally populated. The same broad features have also been
observed experimentally.
ilts with It was generally believed that as E; is increased from far below E,; (Figure 15.6), there would be
purity” a transition from the magnetic to the Kondo-lattice regime. However, Misra et al. (Ref. 17) found
:0.167), that for some choice of parameters, the system undergoes a transition from a Kondo-lattice to a
me” for magnetic regime as £ is increased. Subsequently, it reenters a Kondo-lattice regime for higher
values of £;. This unusual feature of reentry to the Kondo-lattice regime is very sensitive to the
rom the hybridization parameter and occurs only for low V/izl values, which are the most important para-

on from meters in determining n; as well as the thermodynamic properties.
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15.2 MEAN-FIELD THEORIES
15.3.1 The Local Impurity Self-Consistent Approximation'’

The dynamical mean-field theory is a very powerful tool for studying the strongly correlated sys-
tem. In this approach, a lattice model is replaced by a single-site quantum impurity problem
embedded in an effective medium determined self-consistently. This leads to an intuitive picture of
the local dynamics of a quantum many-body problem. Because the impurity problem has been
extensively studied, the self-consistency condition incorporates the translation invariance and the
coherence effects of the lattice. This approach is now popularly known as the local impurity self-
consistent approximation (LISA). The LISA freezes spatial fluctuations but includes local quantum
fluctuations and is therefore characterized as a dynamical mean-field theory. The on-site quantum
problem is still a many-body problem that can be addressed by using a variety of techniques. The
dynamical mean-field theory becomes exact in the limit of large spatial dimensions d — oo or in the
limit of large lattice coordination.

In the mean-field theory, a lattice problem with many degrees of freedom is approximated by a
single-site effective problem. The dynamics at a given site are the interaction of the degrees of free-
dom at this site with an external bath created by the degrees of freedom on the other sites. A simple
example is an application to the Hubbard model in which the Hamiltonian is

H=- % 1(CL.C\r+CLCip) + U nymy,. (15.13)
<ij>,0
An imaginary-time action (the local effective action) for the fermionic degrees of freedom (Cos CZG)
at site o is

BB )
Sep = —/dr/df'z Cl (1)gy (t—1")Cou(z) + U/dm,,T(T)n,,l(r). (15.14)
o o ° A

Here, go(z —17’), the generalized “Weiss function,” is the effective amplitude for a fermion to be
created on the isolated site at time 7 (coming from the “external bath”) and destroyed at time 7’
(going back to the bath). Because g, is a function of time, it accounts for local quantum fluctua-
tions. It can be shown that (Problem 15.2)

goliw,)™" = iw, +p + Gliw,)” — R[G(iw,)™]. (15.15)
G(iw,), the on-site interacting Green’s function, is calculated from
G(z—1') = =< TC(z)C'(7') > 5y (15.16)
g
Glim,) = /er(r)eiw"r,a),, = (271’+1)ﬂ (15.17)

0

Here, R(G) is the reciprocal function of the Hilbert transform of the density of states corresponding
to the lattice. As an example, in the Hubbard model,
— —R—>_—>)

D(e)=§5(8—sk), e = Xtget (®-%), (15.18)
i
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— The Hilbert transform D(&) and its reciprocal function R are defined by

_ y Die _

D(§) = dsf—gg’ RID(&)] =¢. (15.19)
ated Sys- -0
problem Egs. (15.14) through (15.16) are the basic equations of the LISA method. However, the major difficulty
sicture of lies in the solution of S,. It can be shown that solving these equations yields the local quantities, and
has been all the k -dependent correlation functions of the original lattice Hubbard model can be obtained.
: and the It may be noted that the LISA approach freezes spatial fluctuations but retains local quantum
ity self- fluctuations. Each site undergoes transition between the four possible quantum states

quantum [03,]1),11),]1, 1) by exchanging electrons with the rest of the lattice or “the external bath.” As an
quantum example, one can consider (C,, CIU) as an impurity orbital. The bath can be described as a “con-
wes. The duction band” described by the operators (ay, a},), and the Hamiltonian is the well-known single-
or in the impurity Anderson Hamiltonian
Huy =Y €a a,+Y Vi(a) Cos+ Chai) — Y, C Cop + Ungynig,. (15.20)
ited by a ! I lo o
: Of_ free- Eq. (15.20) is quadratic in a] ,ay,, and integrating these gives rise to S,y of the form given in
A simple h Eq. (15.14), provided
¥ A
(15.13) g5 (i, Y™ = iw, + 1 — /dcu : (@) (15.21)
iw, —w
T —o0
Coar Cos) and
Alw) =Y Vid(w-75). (15.22)
lo
(15.14) If the parameters V, g are chosen to obtain go, the solution of the mean-field equations, Hapy
becomes the Hamiltonian representation of S,z Here, &/’s are effective parameters and not g, the
on to be single-particle energy. In addition, A(w), the conduction bath density of states, is obtained when the
t time 7’ self-consistent problem is solved.
fluctua- Thus, by using the LISA approach, one obtains the Anderson impurity embedded in a self-
consistent medium from the Hubbard model. The dynamical mean-field equations are solved such
that the proper g, is obtained. When this gq is inserted into the Anderson model, the resulting
(15.15) Green’s function should obey the self-consistency condition in Eq. (15.15). The mapping onto
Y q PP
impurity models, which have been studied by a variety of analytical and numerical techniques, is
used to study the strongly correlated lattice models in large dimensions. However, it is important to
(15.16) solve S,z by using reliable methods.
(15.17) Application of LISA to Periodic Anderson Model
We will now briefly describe the application of the LISA method to heavy-fermion systems and the
ondi Kondo insulators (Ref. 20). This is done by using the periodic Anderson model (PAM). This model
‘ponding describes a band of conduction electrons that hybridize with localized f— electrons at each lattice
site. The PAM Hamiltonian can be written as

(15.18) H=Y &C} Cua+ VI(CLEis + 1 Cio) + € X fifio + U X sy — 1/2)(nz — 1/2), (15.23)
ko ic io i
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where the terms were defined in Section 15.2. In the d — oo limit, the local interaction gives tise to
k-independent self-energy, and the various Green’s functions are obtained in the form

V2
iw, — € — Zf(ia),,) ’

NN : v’ '
Gy (i, K) ™' = iw, — €5 — Xy (iw,) — , (15.24)
(i, K) iw, — € — X (iw,) P

Gy (i, k)™ = %{[(iwn — &) (iwn — € — Sy (iw,)] - V) »

G (iw,, k)" = iw, — € —

where X;(iw,) is the self-energy of the f electrons, and y, the chemical potential, is absorbed in the
definitions of € and &;. It can be shown by reducing to a self-consistent single-site model that the
effective action is

p B B
Sy = — /0 dr /0 d T 05 (=) +U /U delng (7) — 12y () — 112, (15.25)

The f self-energy is obtained from
Y =g0— G, G =—<Tff ">, (15.26)

Because the self-consistency condition requires that the Green’s function of the impurity problem
must be equal to the local f Green’s function of the lattice model, we obtain

SN A deD(e)
Gy (iw,) = /_m =3, ()~ V=€) (15.27)

Here, D(€) is the density of states (noninteracting) of the conduction electrons.

The temperature dependence of the clectronic transport of the heavy-fermion systems can be
calculated by using a self-consistent second-order perturbation theory in terms of the Coulomb
repulsions U.

15.3.3 RKKY Interaction

There are two competing interactions in the heavy-fermion system: the indirect exchange between the
moments mediated by the RKKY interaction (Refs. 12, 21, 36) and the Kondo exchange between
the conduction electrons and the moments. The conducting electrons and the moments retain their
identities and interact weakly. The RKKY interaction is described in the following section.
Ruderman and Kittel?' considered the problem of nuclear-spin ordering in a metal and used
second-order perturbation theory to derive an expression for the indirect nuclear spin—spin interac-
tion (Problem 15.5),
2 .8, i .
Her = - Zn2 L 5 505 o) cos (2kery) - SZKeTi)] (15.28)

¢ 3
8 EF <ij> }"U- Fii

where &y is the Fermi wave vecior, and n, is the density of conduction electrons. The spin-spin
interaction is long ranged and changes its sign depending on the distance between the pair of spins.
Kasuya discussed the magnetic properties of rare-earth metals based on Eq. (15.28).!2 Yosida®
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showed that the oscillatory behavior originates from the Friedel oscillation of the spin polarization

28 nise to
of conduction electrons induced by a localized spin. Therefore, Eq. (15.28) is known as the RKKY
interaction.
For rare-earth metals, the Fourier transform of the RKKY interaction is given by x(q), the
susceptibility of the conduction electrons for wave number q. The ground state is usually ferromag-
(15.24) netic if x(q) is maximum at g = 0. If the maximum of y(q) occurs at q = Q, the antiferromagnetic .
wave vector, the ground state becomes antiferromagnetic. The ground state may have a spiral spin ‘I
ordering if x(q) becomes maximum at a general wave vector. The Kondo effect is suppressed when-
ever there is any type of magnetic ordering. The low-energy physics of the Kondo effect is given
ed in the by the Kondo temperature
| that the .
Ty = epe”Vrier), (15.29)
However, the characteristic energy of the RKKY interaction is given by J?/ep. This energy
(15.25) dominates over the Kondo temperature in the weak-coupling regime.
In the strong-coupling regime, the local moments are quenched because of the formation of local
singlets. The Kondo effect or the effect of singlet formation is not considered for the derivation of
(15.26) the RKKY interaction. The relation between RKKY interaction and the Kondo effect depends on
the conduction electron density, dimensionality, and the exchange coupling. As an example, we
problem consider two localized spins, S; and S,. The direct exchange coupling between the two spins can
be expressed as
(1527) H= JRKKY& . Sz, (1530)
where Jriky, the intersite coupling constant, is arbitrary. For J >0, the Kondo coupling is antiferro-
magnetic, and the ground state is a singlet. When J > Jrgky, each of the two localized spins forms
s can be | a singlet with conduction electrons, and hence, the interaction between the singlets is weak. When
“oulomb Jrrxy» J, the two localized spins form a singlet by themselves, and J is no longer important. There
is a difference among theorists as to whether the change between the two regimes is smooth or
sharp.
I Extended Dynamical Mean-Field Theory'® f
between The extended dynamical mean-field theory (EDMFT), which is an extension of DMFT, is particu-
ain their larly suitable to solve problems such as the competition between the exchange interaction and
kinetic energy. In the EDMFT, the local quantum fluctuations are treated on the same level as the
nd used intersite quantum fluctuations. This is achieved by reducing the correlated lattice problem to a
interac- novel effective impurity problem corresponding to an Anderson impurity model with additional

self-consistent bosonic baths. These bosonic baths reflect the influence of the rest of the lattice on
the impurity site. As an example, they represent the fluctuating magnetic fields induced by the inter-
(15.28) site spin-exchange interactions in the magnetic case. The intersite quantum fluctuations are included
through self-consistency.
Sin—5pin Smith and Si*® applied the EDMFT method to the two-band Kondo-lattice model
of spins, H= 3 4CLG+ TAE - L WS, 1531
{osida <if>.c i <ij>
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= . . . . . . . . . - . .
where §; is the impurity spin at site i, and ?Z., is the spin of conduction (c—) electrons at site i, t; is
the hopping integral, and J; is the spin-exchange interaction. In the large D (dimension) limit, with
I = t;v'D and Jo = J;+/D, they derived an expression for the impurity action

B f s
S =5, + / el S, T~ / dr / & [2 ClR)Gy (e=)Cofe') + 5 (2) rde-#) 5]
0 0 0 -

(15.32)

where §,,, is the Berry phase of the impurity spin. The Weiss fields G, ! and )(;é are determined by
the self-consistency equations,

Gy (iw,) = iy +p — X toloy Gy i, ) — Gio (i, ) Gy (i0,)/Groe (i) (15.33)
y
and
Y50 = 20T/ (Xog = s io Xsoi2itoc)- (15.34)
y

Here, , is the spin susceptibility. Smith and Si (Ref. 28) also showed that the effective action can
be written in terms of the impurity problem,

—f — :
Hyp = kEEkrIZaﬂka + Z W ¢q ’ d’q kX C;C”
¢ q c

+ (15.35)
HX(Clig +HC) +IcS T+gE S (B, + ),
ko q

where Ey, t, w,, and g are determined from the Weiss fields G, "and ,1/;01 specified by

i, +p =% Wi, — E) = G, (iw,,) (15.36)
k
and
g2y w,/|(iv.)” - wz] = oo (ivn). (15.37)
q

15.4 FERMI-LIQUID MODELS
15.4.1 Heavy Fermi Liquids

A number of universal features are associated with the coherent Fermi-liquid state in heavy-fermion
systems. They can be summarized as follows:

a. The dimensionless Wilson ratio (Ref. 35)
g = X0)/g)7( + iz
7(0) /2%

is close to the value of unity.
b. The specific heat Cy, has a rapid downturn with increasing temperature, which has been fit fo a

function of the form 7°InT.
€. The resistivity p is proportional to 72,
d. The low-T susceptibility y, also appears to vary as 7°.
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In addition, the evidence of universal behavior of heavy fermions is the observation of
t, with Kadowaki and Woods that p/T?=A4 is the same multiple of y* for essentially all materials.'!

A large number of the heavy-fermion systems become heavy Fermi liquids at low temperatures
in the sense that Landau’s Fermi-liquid theory is still adequate to describe the physics, provided the

:’)], large effective mass is included. In the Fermi-liquid theory, the specific-heat enhancement C,/C,y is

related, at low temperatures, to the quasiparticle density of states at the Fermi surface. This is

15.32) equivalent to an average Fermi velocity or to that of an average mass. In view of the above, the
1ed by effective mass is defined as

L (15.38)

Here, it is important to comment on the physical interpretation of the quasiparticles. The f electrons

are supposed to be hopping from site to site. There are a large number of f electrons, and the Lut-
15.34) tinger theorem (described later) requires the Fermi surface to contain the total number of states and
not a volume containing the mobile holes in the f~band. The f electrons have very large mass due to
the weak effective hybridization. Thus, the quasiparticles are essentially f electrons, and the quasi-
particle bands are f-bands that have moved up to the Fermi energy and have been narrowed by cor-
relation. The heavy Fermi liquid arises due to the Kondo screening of the localized moments at
each lattice site. In a sense, the localized moments “dissolve” into the Fermi sea.
15.35) We will now summarize the concepts of the various heavy Fermi-liquid models by following the

elegant but brief review of Senthil et al.>® The Kondo-lattice model can be written as

m can

Hy =Y e.CL Cr + J;’(Z S, C! 6 Crar. (15.39)
k r

15.36) Here, n, is the density of conduction electrons with dispersion g, C,‘:a and Cy, are the creation and !
annihilation operators of conduction states, k is the momentum, and a =1, is a spin index. The '
conduction electrons interact with f electron spins S, via the antiferromagnetic Kondo exchange

15.37) coupling constant Ji. Here, r is a lattice position, and ¢ are the Pauli spin matrices.

In the heavy-fermion liquid models, the charge of the f,, electrons is fully localized on the
rare-earth sites. These electrons occupy a flat dispersionless band, as shown in Figure 15.11a.

- Because this band is half filled, it is placed at the Fermi level. The C,, electrons occupy their own
conduction band. The Kondo exchange turns on a small hybridization between these two bands. The
hybridization can be represented by a bosonic operator

rmion b~Y Cl fra (15.40)

Because <b,> is nonzero, renormalized bands are formed (Figure 15.11b) due to the mixture of the
two bands.
Because the f~band was initially dispersionless, the renormalized bands do not overlap. One
now applies the Fermi-surface sum rule by Luttinger (Ref. 13), also known as the Luttinger theorem
(Ref. 14). According to Luttinger, the volume enclosed by the Fermi surface is entirely determined by
ttoa only the electron density. The volume is independent of the type and strength of an interaction, if the
system remains a Fermi liquid and no phase transition occurs. Using this theorem leads to the conclu-
sion that the occupied states are entirely within the lower band, and a single Fermi surface is obtained
within wave vector kr. The volume within kr is obtained by the total density of f and ¢ electrons.
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(a) (b)
FIGURE 15.11

A completely flat f electron “band”—the dashed line in (a)—mixes with the conduction electrons to obtain
the renormalized bands in (b). The single Fermi surface at ke in the Fermi-liquid state contains states of
which the wave number equals the sum of the ¢ and felectrons.

Reproduced from Senthil, Sachdev, and Vojta®® with the permission of Efsevier.
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Hot Fermi Cold Fermi Spinon Fermi  Small electron
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Fermi fiquid Fractionalized Fermi liquid

FIGURE 15.12

Fermi-surface evolution from FL to FL": The FL phase has two Fermi-surface sheets (the cold ¢ and the hot
f sheets) close to the transition. The f sheet becomes the spinon Fermi surface while the ¢ sheet is the
small conduction-electron Fermi surface on the FL* side.

Reproduced from Senthil, Vojta, and Sachdev?” with the permission of the American Physical Society.

The Fermi surface is in a region (Figure 15.11b) where the electrons primarily have an f character,
and the band is flat. According to this model, this accounts for the large effective mass of the fermio-
nic quasiparticles.

Because the charge fluctuations are quenched at the f electron sites, every rare-carth site has a
constraint

Zﬁm: 1, (15.41)
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15.4 Fermi-Liquid Models 505
which is obeyed at each rare-carth site. This implies that the theory is invariant under the space-
time-dependent /(1) gauge transformation

f1 = foe®, (15.42)
where 7 is imaginary time.
12.4.2 Fractionalized Fermi Liquids
Senthil et al.?%?” showed the existence of nonmagnetic translation-invariant small-Fermi-surface
states, originally with a focus on two-dimensional Kondo lattices. These states are obtained when a
local-moment system settles into a fractionalized spin liquid (L") due to intermoment interactions.
A weak Kondo coupling to conduction electrons leaves a sharp (but small) Fermi surface of quasi-
particles (FL) of which the volume counts the conduction density, but the structure of the spin
_ X liguid is undisturbed. These states have fractionalized excitations that coexist with conventional
to obtain ' Fermi-liquid-like quasiparticles.
ates of In this paper, Senthil et al. considered a three-dimensional lattice by using U(1) states. They
i focused on a three-dimensional U(1) spin-liquid state with fermionic spinons that form a Fermi
of Elsevier, surface. The U(1) spin-liquid state is stable to a weak Kondo coupling to conduction electrons. The
U(1)FL" state consists of a spinon Fermi surface coexisting with a separate Fermi surface of
conduction electrons. Senthil et al. used a mean-field theory to describe a U(1)FL" state and its
transition to a heavy FL. They considered a three-dimensional Kondo-Heisenberg model on a cubic J
lattice,
H=Y el Cut JEKZ 5 Cl G Cw+Jy X S, S, (15.43)
k r <rr'> i
Here, Gy, is the conduction electron destruction operator, E; are the spin-1/2 local moments, and
summation over repeated spin indices « is implied. In a fermionic “slave-particle” representation of
the local moments
?r = l/ZerE:m'ﬁ'a" (1544’)
where f,, is a spinful fermion destruction operator at site r. The decoupling of the Kondo and the
Tthe hot Heisenberg exchange is made using two auxiliary fields by a saddle-point approximation, and the
eno mean-field Hamiltonian is
s the
Huy = Y 6 CloCa—20 L (flafra +H.C)+ i X f1 fro = BoX(Chly fra + H.C.). (15.45)
'al Society. k <rr'> r k
aracter Here, by and yy are assumed to be real, and additional constants to H are dropped. The mean-field
fermio-, parameters by, yo, and y, are obtained from (Problem 15.3)
L=<f! o>, (15.46)
*
te has a ‘
by = Jx/2 <Cl, fru>. (15.47)
(15.41)

Yo = Iu2 <[l fra>. (15.48)
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where r and r’ are nearest neighbors. At zero temperature, in the Fermi-liquid (FL) phase, y,, b,
and y, are nonzero. In the FL" phase, by = Ho =0 but y, #0. In this state, the conduction electrons
are decoupled from the local moments and form a small Fermi surface. The local-moment system is
described as a spin fluid with a Fermi surface of neutral spinons.

The mean-field is diagonalized by the transformation (Problem 15.4),

Ck(z = uk?ka+ + vkyk(z— (15.49)
and
Jra = Vitkas — Ui iu- - (15.50)
The Hamiltonian can be written in terms of the new fermionic operators yy,., ,
Hog = X Bt Vs Vi + BV i (15.51)
a
where
Et+ € € — €2
By = kz Y 4 ( kz kf) + b2 (15.52)

Here, €1 = pty — x02.,—1 25 cos (k,). The uy, v, are determined by

bovk 2, .2

Ly = Lm, wtvy = 1. (15.53)
For the FL* phase, by = yy = 0 but y,# 0. The conduction-electron dispersion &€, determines the
electron Fermi surface and is small. The spinon Fermi surface encloses one spinon per site and has
volume half that of the Brillouin zone. Senthil ef al. assumed that the conduction—electron filling is
less than half, and the electron Fermi surface does not intersect the spinon Fermi surface. In the FL
phase near the transition (small by), there are two bands corresponding to Ey,: one derives from the
c electrons with f character (c-band), whereas the other derives from the f particles with weak ¢
character (f-band).

As shown in Figure 15.12, for small by, the Fermi surface consists of two sheets because both
bands intersect the Fermi energy. The total volume is large because it includes both local moments
and conduction electrons. When b, decreases to zero, the transition moves to FL", the c-Fermi
surface expands in size to match onto the small Fermi surface of FL", and the Sf-Fermi surface
shrinks to match onto the spinon Fermi surface of FL”.

15.5 METAMAGNETISM IN HEAVY FERMIONS

The name metamagnetism was originally introduced for antiferromagnetic (AF) materials where, at
low temperatures, for a critical value of the magnetic field (H), the spin flips, which gives rise to a
first-order phase transition. This was extended to paramagnetic (Pu) systems where field reentrant
ferromagnetism {F) would appear in itinerant magnetism. Eventually, it was used to describe a
crossover inside a persistent paramagnetic state between low-field Pa phase and an enhanced
paramagnetic polarized (PP) phase.
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15.5 Metamagnetism in Heavy Fermions 507
% Xos by, In heavy-fermion systems, the f electrons are located near the border between itinerant and local
slectrons moment behavior, as shown in the phase diagram in Figure 15.13. Doniach considered a one-
ysiem is dimensional analog of a system of conduction electrons exchange-coupled to a localized spin in

each cell of a lattice. He suggested that a second-order transition from an antiferromagnetic to a
Kondo spin-compensated ground state would occur as the exchange coupling constant J increased
(15.49) to a critical value J;.. For J near to, and slightly smaller than J,, there would exist antiferromagnets
with very weak, “nearly quenched” moments, even though the f electrons are in a state with a well- :
defined local nonzero spin state. The existence of this transition can be understood by comparing |

(15.50) the binding energy of the Kondo singlet
Wy ~N(0) e VO (15.54)
(15.51) with that of an RKKY antiferromagnetic state

Wyr ~ CI*N(0), (15.55)

where N(0) is the density of conduction electron state, and C is a dimensionless constant that depends
on the band structure. As shown in Figure 15.13, for JN(0) less than a critical value, the RKKY state
(15.52) dominates, whereas above this, the Kondo singlet binding dominates. The RKKY binding again takes
over at large J, but the weak coupling formula (Eq. 15.54) breaks down in this regime.
The heavy fermions that exhibit metamagnetism are CeRu,Si,, Sr3Ru,0,, CeCug_,Au,, UPt;, 1
UPd2A13, URuzsiz, CePdQSiz, YthQSiz, and CCII'3Si2.
(15.53) There have been many theories proposed for metamagnetism of heavy fermions, but no satis-
factory model is yet available. A review of the various theoretical models was made by Misra.'®
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15.6 CE- AND U-BASED SUPERCONDUCTING COMPOUNDS'®
i5.6.1 Ce-Based Compounds

Since 1979, approximately 25 unconventional superconductors have been discovered in heavy-
fermion systems. Although most of these systems are Ce- and U-based compounds, a few others
are quasi-two-dimensional in nature and filled skutterdites. The multiphase diagrams in UPt; and U
(Be, _,Th,);3 indicate unusual superconductivity with multicomponents. In fact, UPt5 is the first odd-
parity superconductor to be discovered in heavy-fermion systems. UPd,Al; and UNi,Al; are uncon-
ventional superconductors coexisting with the AF phase and are considered to have even- and
odd-parity pairing states, respectively. There is coexistence of hidden-order and unconventional
superconductivity in URu,Si,. UPt;, URu,Si,, UNiyAls, and UPd,Al; have the following common
features: (a) they order antiferromagnetically below Ty, ranging from 5 to 17° K; and (b) they exhibit,
well below Ty and coexisting with AF order, a heavy Landau Fermi-Liquid (LFL) state that becomes
unstable against a superconducting transition at T, (ranging between 0.5 and 2° K).

Recently, a variety of heavy-fermion Ce-based superconductors were discovered due to progress
in experiments under pressure. They include CeCu,Ge,, CePd,Si,, CeRh;Si,, CeNiyGe,, and Celns.
These materials, which have the same ThCr,Si,-type crystal structure as CeCu,Si, (except Celns),
are AF metals at ambient pressure, whereas under high pressures, the AF phases abruptly disappear
accompanied by SC transitions.

The family of CeTIns (T= Co, Rh, and Ir), which has a HoCoGas-type crystal structure (Ref. 16),
has attracted a great deal of attention because they possess a relatively high transition temperature
(T.) such as 7, =2.3° K for CeColns, which is the highest among Ce- and U-based heavy-fermion
superconductors. It has been proposed that valence fluctuations are responsible for the superconduc-
tivity in some Ce-based compounds. This is due to the fact that in metallic cerium, the phase diagram
shows a first-order valence discontinuity line. This line separates the y-Ce with a 4f shell occupation
ny= 1.0 from the a-Ce with n; = 0.9. The valence transition is isostructural, and the line has a critical
end point in the vicinity of p., =2 GPa and T, = 600° K. In cases in which D.r 18 positive, either
T, is very high or T,, is negative, and only a crossover regime is accessible even at 7= 0. The excep-
tions are CeCu,Si, and CeCu,Ge,, for which T, is likely positive although small. In such a situation,
the associated low-energy valence fluctuations can mediate superconductivity.

Holmes et al.'® proposed that the superconducting phase diagram for CeCu,(Ge,Si),, shown
in Figure 15.14, exhibits a maximum in the transition temperature in close vicinity to a valence-
changing critical point. Miyake (Ref. 16) has argued that superconductivity may develop around the
region where the critical end point is suppressed to zero, to become a quantum critical point.

The heavy-fermion superconductor CeColns is a quasi-two-dimensional (2D) system, and the de
Haas—van Alphen effect data indicate a quasi-2D Fermi surface. These properties have led to the
possibility of a Fulde-Ferrell-Larkin—Ovchinnikov (FFLO) (Refs. 7, 13) superconducting state in
CeColns. These states result from the competition between superconducting condensate energy and
the magnetic Zeeman energy that lowers the total energy of the electrons in the normal state. This
competition is strong when the superconductivity is of a spin-singlet nature. In this case, the super-
conducting Cooper pairs form with opposite spins, and the electrons cannot lower the total energy
of the system by preferentially aligning their spins along the magnetic field. This effect, called
Pauli limiting, leads to suppression of superconductivity in the magnetic field. The characteristic
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bit, Schematic phase diagram for CeCux(Ge,Si); illustrating a possible valence fluctuation critical point
nes beneath the superconducting dome at high pressures.
Reproduced from P. Coleman, (Ref. 5), with the permission of Elsevier.
‘ess
[ns. Pauli field Hp determines the upper limit of the superconducting upper critical field He,. When
n3), Pauli limiting is the dominant mechanism for suppression of superconductivity, a new inhomoge-
rear neous superconducting FFLO state would appear at high fields between the normal and the mixed,
or the vortex, state below the critical temperature Trg o With planes of normal electrons that can
16), take advantage of Pauli susceptibility. In the FFLO state, pair breaking due to the Pauli paramag-
ure netic effect is reduced by the formation of a new pairing state (k;, -k +q,), with Igl ~ 2upH/hvp
ion (vp is the Fermi velocity) between the Zeeman split parts of the Fermi surface. One of the intriguing
uc- features is the T and H phase dependence of the phase boundary between the FFLO and non-FFLO
am superconducting state. H"m o (H'ab) exhibits an unusually large shift to higher fields at higher
ion temperatures. The results of Bianchi et al.2 are shown in Figure 15.15.
ical
her .
ep- U-Based Superconducting Compounds
on, The first two U-based heavy-fermion superconductors, UBe;3 (I, =0.9°K) and UPt; (7. = 0.54° K),
were discovered in 1983 by Ott et al. (Ref. 19) and in 1984 by Stewart et al.,3! respectively. It was
wn evident within a few years that UPt; had three superconducting phases, which created great impetus s
ce- for further study of this unusual heavy-fermion superconductor. B
the UBe,; was the first actinide-based heavy-fermion compound that was found to be a bulk super-
conductor below approximately 0.9° K. The cubic UBe;s is also one of the most fascinating HF
de superconductors because superconductivity develops out of a highly unusual normal state character-
the ized by a large and strongly 7T-dependent resistivity. In addition, upon substituting a small amount
s in of Th for U in U,_,Th,Be;s, a nonmonotonic evolution of 7, and a second-phase transition of T,
and below T, the superconducting one, is observed in a critical concentration range of x.
‘his It was also shown that the superconducting state is formed by heavy-mass quasiparticles. This
er- was demonstrated by plotting C,/T versus T (at low temperatures), which is shown in Figure 15.16.
gy The anomaly at T, is compatible with the large y parameter in the normal state at this temperature.
led The temperature dependence of the specific heat of UBe;3 well below T, was the first indication of

stic the unconventional superconductivity. Figure 15.17 shows the nonexponential but power-law-type
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(a) Electronic specific heat of CeColns divided by temperature with H" [110] collected with the
temperature decay method, as a function of field and temperature. (b) Contour plot of the data in (a) in the
H-T plane. Gray lines indicate the superconducting phase transition 7, and the FFLO-mixed state TeFLo

anomaly. The color scale is the same in (a) and (b).
Reproduced from Bianchi et al.2 with the permission of the American Physical Society.
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Electronic specific heat of UBe,3 below 7°K. The solid line represents the BCS approximation of the :
anomaly at and below T..
Reproduced from Ott'® with the permission of Elsavier,
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cal Society. Normalized electronic specific heat of UBe;5 below T, plotted versus T./T. The solid and broken lines
’ represent calculations assuming point nodes in the gap.
Reproduced from Ott'® with the permission of Elsevier.
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decrease of C,(T) that was interpreted as being the consequence of nodes in the gap of the electronic
excitation spectrum.

It was also found that when small amounts of U atoms in UBe,3 were replaced with other ele-
ments, there was a substantial reduction of the critical temperature. 7. is also first substantially
reduced with the alloys U, _,Th,Be,; as x is increased. However, when x> 0.018, T, increases
again until it passes over a willow maximum at x=0.033 and gradually decreases with a reduced
slope when x is further increased. Further, in the range 0.019 <x < 0.05, a second transition at 7.
below T, was discovered by measuring the specific heat of these alloys at very low temperatures.
Measurements of p(T) and y(T) confirmed that the phase at temperatures below the second anomaly
of C,(T) was superconducting.

The phase diagram of superconductivity of U;_,Th,Be,s, from these observations as well as

from thermodynamic arguments, is shown in Figure 15.18. One can identify three different super-
conducting phases: £, L, and {/.

10 T T T ‘
J |
osl U, ,ThBe,, 4
o)
o6 ° o 0 00
== 0 &
= 0o &
Ty A B
) o
04r ,A a4 ab A /]x o
F | |
0.2} | \
l L
ol A | _ |
0 2 4 5
%Th
FIGURE 15.18
An x, T phase diagram for superconducting U;_,Th,Be 5 as derived frem tha i ine sp

heat. The letters F, L, and U denote three superconducting phases.

Reproduced from Ott*® with the permission of Elsevier.
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Superconductivity has also been discovered in 60
UPts, and its alloys, URu;Si;; and in UPd,Al,
and its alloys, UNiyAls, UGe,, URhGe, and Ulr. 50 1

The discovery of superconductivity in UGe,
in single crystals of UGe, under pressure below 40 T
P.~ 16 kbar was very surprising. The sensational o
part of this discovery is that the pressure P~12 = 30 _ |
kbar, where the superconducting temperature FEmemagnetism
Ty =0.75° K is strongest, the Curie temperature 20y |
Tc~35°K is two orders of magnitude higher

o ) 10+ 10xT, .

than 7s; superconductivity occurs in a very %
highly polarized state (u(T — 0° K) ~ ug). 0 , { SC o

The superconductivity in UGe, disappears 0 5 10 15 20
above a pressure P, = 16 kbar that coincides P (kbar)

with the pressure at which the ferromagnetism  pguRe 15.19
is suppressed. The pressure-temperature phase
diagram of UGe, is shown in Figure 15.19.

The pressure-temperature phase diagram of UGes.
Reproduced from Demuer et al.* with permission of Elsevier.

15.7 OTHER HEAVY-FERMION SUPERCONDUCTORS

15.7.1 PrOs4Sb12

The filled skutterdite PrOs,Sb;, becomes superconducting at 7, = 1.85°K. It appears to involve
heavy-fermion quasiparticles with effective mass m" ~ 50 m,. There is speculation that the quadru-
polar fluctuations play a role in the heavy-fermion superconductivity of PrOs,Sb;,. The ground
state of Pr°* ions in the cubic CEF appears to be the I'; nonmagnetic doublet. Therefore, the
heavy-fermion behavior possibly involves the interaction of the Pr** I'; quadrupole moments and
the charges of the conduction electrons. In such a case, the quadrupolar fluctuations would play a .
role in the heavy-fermion superconductivity of PrOs;Sb;,. :

The variation of C at low temperature and the magnetic phase diagram inferred from C, the resis- 5
tivity and magnetization, show that there was a doublet ground state. The two distinct superconducting i
anomalies in C provide evidence of two superconducting critical temperatures at T = 1.75° K and
Tey =1.85° K. This could arise from a weak lifting from of the ground-state degeneracy, which
supports the theory of quadrupolar pairing; i.e., superconductivity in PrOs,Sb;, is neither of electron—
phonon nor of magnetically mediated origin.

The H-T superconducting phase diagram of PrOs,Sb,; determined by specific heat measure-
ments i1s shown in Figure 15.20.

15.7.7 PuCoGas

The discovery of superconductivity in the transuranium compound PuCoGas with T, ~ 18.5° K, which
is by far the highest critical temperature for any heavy-fermion superconductor, has attracted consider-
able attention. PuCoGas crystallizes in the HoCoGas structure, the same type as the CeMIns materials.
The H-T phase diagram of PuCoGas, inferred from the heat capacity data as a function of temperature
in a magnetic field applied along the three orthogonal directions, is shown in Figure 15.21.
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FIGURE 15.20

H-T superconducting phase diagram of PrOs4Sby,. The field dependences of Te1 and Ty are identical. The
dashed-dotted line is the same fit with the same parameters as the other lines but without paramagnetic
limitation.

Reproduced from Measson et al.'® with the permission of Elsevier,
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H-T diagram of PuCoGas inferred from single-crystal heat capacity measurements with magnetic field applied
along three orthogonal directions. The inset shaws representative neat capacity data from which 7(H) was
inferred.

{ Reproduced from J.L. Sarrao ef al, (Ref. 23), with the permission of Elsevier.
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1 PuRhGas

The discovery of superconductivity in PuRhGas with T, ~9°K was reported by Wastin et al.
(Ref. 34). PuRhGas crystallizes in the tetragonal HoCoGas structure with the lattice parameters a =
4.2354 A and ¢ =6.7939 A. This structure has a two- dimensional feature, where alternating PuGa,
and RhGa;, layers are stacked along the c-axis. There are two crystallographically inequivalent Ga
sites in this structure, which are denoted Ga(1) (the Ic site) and Ga(2) (the 4i site), respectively.
The Ga(l) site is surrounded by four Pu atoms in the ¢ plane, whereas the Ga(2) site is surrounded
by two Pu and two Rh atoms in the g plane.

The high-pressure measurements on PuRhGas are shown in Figure 15.22, in which the electrical
resistance is plotted against temperature for pressures up to 18.7 GPa. This figure displays a metal-
lic shape in the normal state, but an NFL behavior (p(7) ~ T"3) develops up to 50-60° K. The inset
of Figure 15.22 shows the plot of T. of both PuRhGas and PuCoGas against pressure.

The variation of T, as a function of pressure (Figure 15.22) suggests that the pairing mechanism
is differently affected by pressure for the two materials. The layered crystal structure associated
with the quasi-2D Fermi surface calculated for these materials suggests that anisotropic properties
might be the cause for this difference.

itical. The
agnetic

125 7
PuCoGag

17 of Elsevier.
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) was Evolution of the electrical resistance of PuRhGas crystal up to 18.7 GPa. The inset shows T, behavior of
PuCoGas as a function of the applied pressure.
1 of Elsevier. Reproduced from Griveau et al.® with the permission of Elsevier.




516 CHAPTER 15 Heavy Fermions

The (7-P) phase diagram of PuRhGas and PuCoGas can be compared to that of CeColns. In
these isostructural compounds, the superconducting transition temperature increases with increasing
pressure and reaches a maximum before decreasing at higher pressure. The NFL behavior is also
maintained over a large range of pressure.

Comparison between Cu and Pu Containing High-T, Superconductors

Recently, Wachter’® compared the Cu “high 7, superconductors” with equivalent measurements on
“high T.” PuCoGas and PuRhGas. He observed the following common features. First, in all materi-
als, spin pseudogaps were observed, which necessitates at least antiferromagnetic short-range order,
i.e., in clusters. Second, all Cu and Pu superconductors are of mixed valence, as photoemission data
have shown. The majority ions (Cu or Pu) are magnetic, and the minority ions are nonmagnetic and
act as spin holes. Only short-range correlations remain because these spin holes have a concentra-
tion of 10% and hence dilute the antiferromagnetic order. According to Wachter, two dimensionality
is not essential and n- or p-type conductivity is not important.

i5.8 THEORIES OF HEAVY-FERMION SUPERCONDUCTIVITY

The superfluid *He, the physical properties of which were extensively studied prior to the discovery
of heavy-fermion superconductivity, exhibited gap anisotropy and nodal structures like some
heavy-fermion compounds. After the discovery of heavy-fermion superconductors, it was natural to
compare them with superfluid *He to be able to understand the former. However, there are many
differences between the two systems. For example, the presence of a crystal field and the fact that
charged particles are paired in heavy fermions instead of pairing of the neutral atoms in He are
important. In addition, the strong correlation effects and the spin-orbit interaction in heavy-fermion
systems are major factors to be considered.

In heavy-fermion compounds, the f-shell electrons are strongly correlated. These f electrons deter-
mine the properties of the quasiparticles at the Fermi level, which gives rise to a large effective mass. It
is generally believed that superconductivity is mainly by the heavy quasiparticles. These quasiparticles
with f characters would have difficulty forming ordinary s-wave Cooper pairs, characteristic of the BCS
theory of superconductivity, due to the strong Coulomb repulsion. To avoid a large overlap of the wave
functions of the paired particles, the system would rather choose an anisotropic channel, such as a
p-wave spin triplet (as is done in superfluid *He) or a d-wave spin singlet state to form pairs.

We cannot review here in detail the theory of superconductivity of each heavy-fermion compound.
In addition, heavy-fermion systems are one of the areas in physics where the experimentalists are well
ahead of the theorists and superconductivity in various heavy-fermion compounds has a different origin.

15.9 KONDO INSULATORS
15.9.1 Brief Review

The strongly correlated j~eleciron materials called Kondo insulators have recently attracted much
attention because of their unusual physical properties. At high temperatures, they behave like metals
with a local magnetic moment, whereas at low temperatures, they behave as paramagnetic insulators
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Zolns. In with a small energy gap at the Fermi level. It appears that a gap in the conduction band opens at
ncreasing the Fermi energy as the temperature is reduced. Despite intensive theoretical and experimental stu-
o is also dies, the mechanism of gap formation is still unclear, and there is considerable controversy on how
to describe the physics of Kondo insulators. We will concentrate on the 4f and 5f compounds, i.e.,
those f~element compounds that are in a certain sense “valence” compounds. The general properties
rs of these materials are characterized by a small gap. The f elements that are present in these com-
pounds have unstable valence, with the valence corresponding to the nonmagnetic f state of the ele-
ments on ment satisfying the valence requirements of the other elements in the material. The Kondo insulator
1l materi- can be viewed as a limiting case of the correlated electron lattice: exactly one half-filled band inter-
ge order, acting with one occupied f-level. This can also be viewed as the limiting case of the Kondo lattice
sion data with one conduction electron to screen one moment at each site. However, there has been no clear
netic and definition of Kondo insulators, and this sitvation stems from the confusion over how to understand
oncentra- various types of Kondo insulators consistently.
1sionality Following is a variety of Kondo insulators, some of which are semiconductors that become Kondo
insulators with application of pressure: CeNiSn, Ce;BisPt;, CeRhAs, CeRhSb, CeNiSn, CeRu4Sng,
URu,Sn, CeFe P),, CeRuyP |5, CeOs4Sby,, UFe P2, TmSe, URu,Sn, YbB;», SmBg, and SmS.
A detailed review of the experimental properties of each one of these Kondo insulators is
available in Misra.'®
liscovery
ke some Theory of Kondo Insulators
;?;urr:;;; The Anderson Lattice Model
fact that The .Anderson. lattice model.provides a basic description of the electronic propertiesn of_the heavy—
 3He are fermion materials. The solution of the model.at half-filling is expected to exhibit an 1nd1r§ct gap in
fermion the density of states. The chemical potential lies directly in the gap making the system semiconduct-
ing. Thus, if there are four states per atom—two states per atom in the upper hybridized band and
ns deter- two states per atom in the lower hybridized band—then at half-filling, two electrons per.atom com-
> mass. Tt pletely fill the doubly degenerate lower hybridized band and the noninteracting system is semicon-
iparticles ducting. According to Luttinger’s theorem, if the interactions are turned on adiabatically so that
the BCS perturbation theory converges, the ground state of the interacting system will remain insulating. The
the wave Hamiltonian can be written as
such as a H=H;+H;+Hg, (15.56)
o where Hy is the Hamiltonian of thfa lattice of localized f electrons, H,; is the Hamiltonian of the
, are well conduction electron states, and Hy, is the hybndization Hamiltonian,
nt origin. I Hp = ZEffz wfiat Z f;Ta Fighiplia (15.57)
Hy =Y eq(K)d} (i (15.58)
k,a
:ed much ad
<e metals Hy = N;" Y [V(K)exp(~ik - R;)fdy o+ V* (K)exp (ik - R))d] , fia- (15.59)
ika

asulators
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Here, E; is the binding energy of a single f electron to a lattice site, and Uy is the Coulomb
repulsion between a pair of f. electrons located on the same lattice site. Due to the spin and
orbital degrees of freedom, the total degeneracy of each f orbital is 14. This degeneracy can be
lifted by spin-orbit coupling and crystal field splitting. We will consider the degeneracy of the
lowest f multiplet to be N=2. The operators fij;( fa) create (destroy) an f electron at site i with a
combined spin-orbit label @. The summation is over all lattice sites and all degeneracy labels.
e4(k) is the dispersion relation for the d-bands; the operators dj (dy,) create and annihilate an
electron in the ath d sub-band state labeled by the Bloch wave vector k. The hybridization
between the f states and the states of the d-band is governed by Hy;. The first term represents a
process in which a conduction electron in the Bloch state k hops into the f orbital located at
site i. However, «a is conserved in the process. The Hermitian conjugate term describes an
electron in the f orbital at site / tunneling into the conduction band state labeled by the Bloch
state k. The summation runs over the total number of lattice sites N, and over the k values of the
first Brillouin zone.

Riseborough’s Theory

Riseborough (Ref. 20) showed that the noninteracting Hamiltonian (Uy — 0) is exactly soluble and
the electronic states fall into two quasiparticle bands of mixed f and conduction band character. He
showed that in this limit, the binding energy of the f-levels falls within the width of the unhybri-
dized conduction band, which has a width of 2 W = 12¢ in the tight-binding approximation. The
indirect gap is between the zone boundary of the upper branch and the k = 0 state of the upper
branch. The direct gap occurs for & values halfway along the body diagonal and has a magnitude of
2V. A sketch of the hybridized bands is shown in Figure 15.23. Each band can contain a maximum

of 2N electrons.
Thus, the noninteracting system is a semi-

6 conductor. If the interactions are turned on adia-
batically, Luttinger’s theorem implies that the
4 E.(k) ground state of the system will be an insulator.
In the mean-field approximation, one can use
2 1 the slave boson technique described earlier. This

g, approach to the Uy — oo limit of the Anderson
lattice model projects the states of double f
occupancy. The f electron operators are replaced

—2 1 by a product of an f quasiparticie operator and a

slave boson field,

E/t
o

N S =Tk
ha "fN‘T’ (15.60)
-6 T T T 1 . = b -
-1 -0.5 0 0.5 1 fia =bif
kiGI2 where b; and bj are the annihilation and creation
FIGURE 15.23 operators for the site i, and the f quasiparticle

operators are fm and f; . These operators satisfy

Sketch of the hybridized band structure, for & vectors .
the constraints

along the body diagonal of the first Brillouin zone.
Reproduced from Riseborough®® with th jssion of i —
eproguced from gl wi e permlss‘lon (2] Efi,afi,a + b;rbl = Qi — 1 (15_61)
Taylor & Francis Ltd. a
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oulomb The slave boson field satisfies the equation of motion
pin and A N 1 K-RI1FT
can be ih Py (b]) = A:b; + Nsmlé V(k)exp[ik - Rf, ,dxq- (15.62)
of
;f witlt1h : The lowest-order approximation, the terms of zeroth order in the boson fluctuation operators by, is
labels retained. If by is finite, this corresponds to a time-independent macroscopic equation of the k =0
ilate an. state that is equivalent to assuming that the boson ficld has undergone Bose-Einstein condensation.
lization In this approximation, Eq. (15.62) can be written as (Problern 15.6)
ssents a Iiby= =L S V(K)explk - R)(F i) (15.63)
-ated at N ka
ibes an Here, by and 4; can be determined self-consistently from Egs. (15.62) and (15.63). The hybridization
: Bloch matrix element is renormalized through
s of the V(k) = bV (k), (15.64)
and the f-level energy is renormalized through
Ef = E 4. (15.65)
ble and . . e
ster. He This moves the quasiparticle component of the f structure from the incoherent bare f-level com-
nhybri- ponent of the density of states to a position near the chemical potential. It can be shown that the
>n. The quasiparticle dispersion relations are obtained as (Problem 15.7)
> upper Ex(K) = 5B+ ea(k) = (1B —eali) + 41V (1) )12 (15.66)
itude of 2
Ximum In this formulation, the amplitude of the slave boson condensate &, is temperature dependent and
vanishes at a critical temperature, 7, for the semiconductor system. It can be shown that
1 semi- E —
n adia kyT, = 1.14Wexp| L2, (15.67)
NA
hat the 5
sulator. where A = [V|*/W, W represents approximately half the width of the conduction band, and the
.an use direct gap has a magnitude of 2V. It is interesting to note that this temperature dependence is related
sr. This to the Kondo temperature, in which the effects of both band edges are taken into account.
\derson It may be noted that the slave boson mean-field theory is exact only when the degeneracy of the
uble f J-level approaches infinity. In addition, it is valid only when the lower band is fully occupied,
splaced which is true only for some Kondo insulators but not others, such as SmBg. The effect of the mag-
rand a netic field gives rise to a Zeeman splitting of the quasiparticle bands, reducing the hybridization
gap. It has been shown by using the periodic Anderson lattice (in the limit of infinite spatial dimen-
sions, d — co) that the semiconductor-to-metal transition associated with the high field closing the
(15.60) gap may be of the first order.
reation PROBLEMS )
sarticle

i 15.1. The Schrieffer-Wolff transformation®* can be easily used to relate the Anderson model of a
satisfy localized magnetic moment to that of Kondo. The two models can be shown to be equivalent
in small s —f mixing. The Anderson Hamiltonian for a single localized orbital f is

N At P - .
(1561) H= ZekﬂkU‘FZGf nf,,+Un_anfl +Z[kackacf0+ ka fackg] =Hy+H,, (D
ko 4 ke
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where €, and & are the one-electron energies of the conduction and localized orbitals,

measured relative to the Fermi energy, and H, is the sum of the first three terms in Eq. (1).

The model can be characterized by two dimensionless ratios

rj:EFt/lGil’
where
E&=&+U, a=+,
=&y, x=-—,
and

r,= ”N(ea)leszaVE'

N(&,) is the density of band states in the perfect crystal at energy €,, and the matrix

@)

3)

)

clements are averaged over k states of this energy. If €, >0 and €_ <0, then for Vg — 0,
the ground state is given by the filled Fermi sea and a single electron occupying the f orbital.
A localized moment occurs even at zero temperature because the states with Jf-electron spin 1
and | are degenerate. For r, <« 1, these two spin states are mixed by electrons hopping on and
off the f orbital due to V. Because arbitrarily small energy denominators €, — €, ~0 occur in
fourth and higher orders of V, V cannot be treated directly by perturbation theory. However,
the interactions that dominate the dynamics of the system for 7, << 1 can be isolated. Show

that one can perform a canonical transformation,
H=¢"He™s,

by requiring that Vi, is eliminated to the first order, where
[Hy, S| = H,.

Show from Egs. (4) and (6) that

ka
S=¥Y—=L_n? Cl C,,-H.C,
ko'zaek_ea fi—o ko - f

where the projection operators njf’_a are defined by

n]’f’_a =1y s, a= +,
= ]._nf!—ow a=-—.

Show also that in the limit r, < 1,
[TI ~ Hg + H2 s
where

Hy = L[S, | m Hoe = =X Jen(LSP,) - (FISY)),
kk'

where 28 = 7 are the Pauli spin matrices, ¥, and ¥, are the field operators

Cret = [ &
lP = ’ 'II - 3
‘ (%> ‘ (%)

®)

©

D

t)

&)

(10)

(1D

15.2,

[ N

n

Tm
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and
(). _ _ - -
@ S =VgVal(€—€ ) (e —e. ) — (ev—e ) —(ev—e) ). (2)
) For k and k' ~kp, Jy is given by
U
Tt = Jo = 2|V ———. 13
krkg 0 I kpfl Ef(ef+ U) ( )
&) This coupling is antiferromagnetic. If there is an f electron at every site of the lattice, from
Eg. (10), the f-electron degrees of freedom are represented by localized spins.
15.2. Show that
(4) . —1 —1 —1
goliw,) =iw, +u+G(iw,) —R[Gliw,) ] (1
-0, Here, G(iw, ), the on-site interacting Green’s function, is calculated from the effective action
orbital. S,y defined in Eq. (15.14),
spin 1t , /
o) Al G(r~7') = -<TC(r)C'(v)) >, 2
ceur in p
/ever, . 2 1
10w Glim,) = /dTG(r)e'“”", W, = (n’# 3)
0
(5) Here, R(G) is the reciprocal function of the Hilbert transform of the density of states
corresponding to the lattice. The noninteracting density of states is
©) D(e) = Y 8(e - &), @)
k
where
%) &= Z i o (Ri—R;) 5) “
i i
The Hilbert transform D(€) and its reciprocal function R are defined by %
- = _D(€)
©) D(¢) = / de—— 6
{ (=] dez (6)
and
2 RID()=¢ (7)

In principle, G can be computed as a functional of g, using the impurity action S.g. Thus,
(10) Egs. (15.14), (1), and (2) form a complete system of functional equations for the on-site
Green'’s function G and the Weiss function g.

15.3. The Hamiltonian of a three-dimensional Kondo-Heisenberg model on a cubic lattice is

(11) H=Y¢&Cl Cat %Zﬁ-cja?aa,cm, +Ig Y S-S )
k y

<re'>
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. . . = .
Here, Cy, is the conduction electron destruction operator, S, are the spin-1/2 local moments,
and summation over repeated spin indices « is implied. In a fermionic “slave-particle”
representation of the local moments

S = U2} G wifoa @
and f,, is a spinful fermion destruction operator at site 7. The decoupling of the Kondo and
the Heisenberg exchange is made using two auxiliary fields by a saddle-point approximation,
and the mean-field Hamiltonian is

Hmf = Z €k Cl:acka —Xo Z (frtxfr’a +H.C.) +”fz-ﬁ;fru - bOE(Czafka +H~C')- (3)
k <rr’> r k
Here, by and y,, are assumed to be real and additional constants to H are dropped. Show that
the mean-field parameters by, y,, and Hy are obtained from

1= <f! fru>, )
by = Jx/2 <C! fiu>, (5)
Yo =Jul2<f} fra>, (6)

where r and 7’ are nearest neighbors. At zero temperature, in the Fermi-liquid (FL) phase,
Xo»bo, and y, are nonzero. In the FL" phase, by = uy = 0, but y, #0. In this state, the
conduction electrons are decoupled from the local moments and form a small Fermi surface.
The local-moment system is described as a spin fluid with a Fermi surface of neutral spinons.

In Problem 15.3, the mean-field is diagonalized by the transformation (Senthil et al.2®),

Cra = U¥ias T Vi¥ka- (1)
and

Jea = Vicka + ~ WY a-- 2)

Show that the Hamiltonian (Eq. 3 in Problem 15.3) can be written in terms of the new
fermionic operators yy,,,

Hmf = kZEk+ }{a+ Yka++Ek—Y;a—yka—7 (3)
where
Ex+E € — €\ 2
By = X kfi\/( : "f) +87. )
2 2
Here, €xy=pt; — ¥0 24123 €08 (k). The uy, v are determined by
byvy 2 2

Uy =—————, Uy +v, = 1. 5
k Ek+_ek k k ( )

4.cn

. The metals of the rare-carth (lanthanide) group have very small 4/" magnetic cores immersed in

a sea of conduction electrons from the 6s-6p bands. The magnetic properties of these metals
can be understood in detail in terms of an indirect exchange interaction between the magnetic
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cores via the conduction electrons. If the spins of the local magnetic moments at r = r; are S;
and at r =1 are §;, the second-order interaction between the two spins is given by

,<ks|H|K's' ><Kk's' |H|ks>

H” X — (1)
( ) kg;s' £ — Ey
Here,
H= 3% [ / d3x¢]*(,x,(x)A(x—ri)S-S,-qSks(x) cl,x,cks, 2)
kk'ss’

where A(x —1;) is the interaction (which is proportional to the delta function) between the spin
of the electron S and the spin S; of the local moment at site r;. Here, ¢, are the Bloch functions
s = @i ls >, and S operates on the spin part of ¢,,. Show that Eq. (2) can be rewritten as

H= %kzk‘, e IR (K K)[ST el ciq + 7 ey cng +SHcpr i — o), 3)
where
JK) = [ 5 AR @
If
A(x) = J5(x), )
J(k', k) =J. ©)

From Egs. (1), (2), and (6), show that

kp o

—i(k—k’).x
H"(x) = Y(S-S:)(S-8;)m)*h2(2z)°P / d’k / K "’k2 e (7)

o kF

The sum over electron spin states is done with the help of the standard relation between Pauli
operators,

(O"S,‘)(O"Sj)=Si'Sj+i6'SiXSj. (8)
Because the trace of any component of ¢ vanishes,
2(S-8))(8-8) = %Si'sj- )
s
From Egs. (7) and (9), by performing the integrations, show that
, 4P mk}, ,
H (X) = W [2kFr,-j COS(ZkFTij)— sm(ZkFrij)]Si . Sj (10)

The density of conduction electrons,

TEemCT—

|
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15.6.

15.7.

From Egs. (10) and (11), we obtain the RKKY interaction,

2 _ S-S, in (2kpr;
Hggxy = o7 2T Y —— |2kp cos (2kery) — MJ,

(4
8 ‘e i T

(12)

where a factor of % has been multiplied to avoid double counting of i and j. The spin—spin
interaction is long ranged and changes its sign depending on the distance between the pair of
Spins.

The slave boson field satisfies the equation of motion
. 0 1 . rdl
zha (61) = Al + A kz V(k)exp[ik- R f, dia. o))

The lowest-order approximation, the terms of zeroth order in the boson fluctuation operators
by, is retained. If by is finite, this corresponds to a time-independent macroscopic equation of
the k = O state, which is equivalent to assuming that the boson field has undergone Bose—
Einstein condensation. In this approximation, show that Eq. (1) can be rewritten as

* — p <t
Kby = = T V(K)exp 6 R Fouda): @
s ka
Show that in the slave boson mean-field theory, the quasiparticle dispersion relations are
obtained as

E.(k) = 2 (B + (k) (B - (W) +4[T 1)) ") ()
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